
Lecture 2: Energy levels in metal complexes: ligand field 
theory, spin-orbit coupling, zero-field-splitting, magnetic 
susceptibility 
 
 
 
Ligand Field Theory  
 
The full rotation group of a sphere: R3 or SU2 
 
The full rotation group of a sphere has an infinite number of elements. The symmetry operations of 
R3 are all rotations about all axes of the sphere. As an exercice you may demonstrate that 2 
rotations C(φ) about 2 different arbitrary axes but of the same angle φ belong to the same class. 
 
Recall that any symmetry operations commutes with the hamiltonian of the system that you 
consider. Hence the wave function associated to each of the terms 2S+1Γ of the free ion are a basis 
of the irreducible representations of the full rotation group R3 of a sphere. 
 
Indeed, a simple formula to determine the characters of a rotation by an angle Φ spanned through 
the 2l+1 functions |l ml> is easily obtained (exercice). Consider: |l,m> = F(r)Plm(θ)eimφ where R(Φ) 
is a rotation by an angle Φ about the polar axis; we thus obtain: 
 

R(Φ)|l,m> = R(Φ)F(r)Plm(θ)eimφ = F(r)Plm(θ)eim(φ+Φ), m=-l,...,0,...,l. 
 
It is easily seen that the following diagonal matrix of dimension (2l+1) permits to represent R(Φ) : 
 

! R "   =  

eil" 0

...

0 e-il"

 

 
and that the characters of this representation becomes 
 

! "   =  eil" + ei l-1 " + ... + e-il"  =  

sin l+1

2
"

sin 
"

2

 

 
If one generalizes for the case of many-electron functions, each irreducible representation Γ has as 
basis the 2L+1 spatial functions |L,ML>  i.e. Γ=S if L=0, Γ=P if L=1, Γ=D if L=2, Γ=F if L=3, Γ=G 
if L=4, Γ=H if L=5, etc. .... Thus, the character associated to the rotation C(φ) is: 
 

! "   =  

sin L+1

2
"

sin 
"

2

 

 
The characters of the full rotation group R3 pour has the identity element E=C(0) and the operations 
of the class C(φ) are represented by: 



 
 

R3 E ∞ C(φ) 
 
 
Γ 

 
 

2L+1 

 
sin L+1

2
!

sin 
!

2

 

 
 
 
A complete character table for this group is given below : 
 
 

R3 E ∞ C(φ)    
S 1 1   x2+y2+z2 
P 3 1+2cos(φ)  (x,y,z), (Rx,Ry,Rz,)  
D 5 1+2cos(φ)+2cos(2φ)   (2z2-x2-y2,x2-y2,xy,xz,yz) 
F 7 1+2cos(φ)+2cos(2φ)+2cos(3φ)    
... ... ...    

 
 
 
Remember : Terms of all dn  configurations: 

configuration Terms 
d0 et d10 1S 
d1 et d9 2D 
d2 et d8 1G, 3F, 1D, 3P, 1S 
d3 et d7 4F, 4P, 2H, 2G, 2F, 2D, 2D, 2P 
d4 et d6 5D, 3H, 3G, 3F, 3F, 3D, 3P, 3P, 1I, 1G, 1G, 1F, 1D, 1D, 1S, 1S 

d5 6S, 4G, 4F, 4D, 4P, 2I, 2H, 2G, 2G, 2F, 2F, 2D, 2D, 2D, 2P, 2S 
 
 
Splitting of the energy levels in a chemical environment  
 
Consider the characters of R3 for l = 2 
 

! "   =  

sin l+1

2
"

sin 
"

2

 

 
For a rotation C2 φ=π and hence 
 

! C2   =  

sin 2+1

2
"

sin "
2

  =  

sin 5"
2

sin "
2

  =  1

1
  =  1 

 
And similarly for order 3 and 4 rotations  
 



! C3   =  

sin 2+1

2
 2"

3

sin 1

2
 2"

3

  =  

sin 5"
3

sin "
3

  =  

-sin "
3

sin "
3

  =  -1 

 

! C4   =  

sin 2+1

2
 "
2

sin "
4

  =  

sin 5"
4

sin "
4

  =  -1 

 
The formula is also valid for the case where φ=0 i.e.  
 

χ(E) = 2l+1 = 5 
 
This result can be obtained as follows, that is consider : 
 

! 

" # = 0( ) =
lim

# $ 0

sin l +1 2( ) % #[ ]
sin # 2( )

=
l +1 2( ) % #
# 2

= 2 % l +1 2( ) = 2l +1 

 
In an octahedral (O symmetry point group) environment, using a character table e.g. : P.W. Atkins, 
M.S. Child, and C.S.P. Phillips; "Tables for Group Theory"; Oxford University Press 1970; the 
irrep d (l=2) is reducible and the reduction of irrep (short notation for irreducible representations) d 
(Tables for Group Theory cited above p. 24) yields e + t2. 
 
Consider a few typical examples: 
 
Example 1: Splitting of the |L ML> levels in an octahedral environment 
 

Symmety
of level 

 
L 

 
χ(E) 

 
χ(C2) 

 
χ(C3) 

 
χ(C4) 

 
Irreducible representations 

S 0 1 1 1 1 A1g 
P 1 3 -1 0 1 T1u 
D 2 5 1 -1 -1 Eg+T2g 
F 3 7 -1 1 -1 A2u+T1u+T2u 
G 4 9 1 0 1 A1g+Eg+T1g+T2g 
H 5 11 -1 -1 1 Eu+2T1u+T2u 
I 6 13 1 1 -1 A1g+A2g+Eg+T1g+2T2g 

 
 
Example 2: Splitting of the d-orbitals in various symmetries 
 

R3 Oh Td D4h D3 D2d 
 

d 
 

eg+t2g 
 

e+t2 
 

a1g+b1g+b2g+eg 
 

a1+2e 
 

a1+b1+b2+e 
 
 
Example 3: Splitting of all d2 terms in an octahedral environment 
 
There are two procedures.  
1st procedure: weak field approach, the terms of the free ion are split by a weak chemical 



environment (filed) 
 
   1G ! 1A1+1E+1T1+1T2 
   3F ! 3A2+3T1+3T2 
   1D ! 1E+1T2 
   3P ! 3T1 
   1S ! 1A1 
 
2nd procedure: strong field approach, the d-orbitals are first split by a strong chemical environment 
(field) in eg et t2g and the inter-electronic repulsion acts as a perturbation. We shall consider all 
configurations egxt2gn-x (x = 0, 1, ..., n) and determine though the direct product all states stemming 
from each of those configurations. Our example yields 
 
 eg2: eg ! eg  =  A1g + [A2g] + Eg  ! 1A1g + 3A2g + 1Eg 
 t2geg: t2g ! eg  =  T1g + T2g   ! 1T1g + 3T1g + 1T2g+ 3T2g 
 t2g2: t2g ! t2g  =  A1g  + Eg + [T1g] + T2g ! 1A1g + 1Eg + 3T1g + 1T2g  
 
Both procedure are obviously equivalent as illustrated in the correlation diagram below: 
 



 
 
 
Double Groups  
 
The relation 
 

! "   =  

sin L+1

2
"

sin 
"

2

 

 
was obtained neglecting the coupling between the orbital momentum   

! 

r 
L  and the spin   

! 

r 
S . However, if 

one does consider this coupling the resulting momentum 
 

J  =  L + S 
 
has to be considered. The relation of χ(φ) for the functions associated to a (2J+1)-fold degenerate 
state reads 
 



! "   =  

sin J +1

2
"

sin 
"

2

 

 

where J is the quantum number associated to J. 
 
The possible values for L are all integers, whereas J can also take half integer values. Let’s now 
consider a rotation by an angle φ followed by a rotation of 2π about the same axis; if J is integer, the 
equation above becomes: 
 

! "+2#   =  ! "  
 
However if J is half-integer we get : 
 

! "+2#   =  -! "  
 
Hence a rotation of 2π can no longer be considered  as the identity operation. However a rotation of 
4π corresponds to the identity. 
 
To circumvent this difficulty, Bethe proposed note a rotation of 2π by R and to associate to each 
symmetry group G a new one labelled G* containing all elements of G plus the direct product R by 
G 
 

! 

G* = G,R"G{ }  
 

Example 1: Irreducible representation spanned by a spin doublet:
 

!

"

  

 
Let’s apply the relation for χ(φ) with J=1/2, we get: 
 

 
O* 

 
E 

 
R 

4C3

4C3

2
R

= 8C3

 
4C3R

4C3

2

= 8C3R

 

 
3C2

3C2R

= 6C2

 

3C4

3C4

3
R

= 6C4

 
3C4R

3C4

3

= 6C4R

 
6C2

'

6C2

'
R

= 12C2

'

 

!
"

#

 
 
2 

 
-2 

 
1 

 
-1 

 
0 

 
2  

 
- 2  

 
0 

 
 
verifying in: P.W. Atkins, M.S. Child, and C.S.P. Phillips; "Tables for Group Theory"; Oxford 
University Press 1970, we notice: 
 

!
"

#

 = E1/2 

Example 2: Irreducible representation spanned by a spin doublet triplet  
 
J=1 is integer and yields:  
 



Γtriplet  =  T1 
 
Exemple 3: Determine all spin-orbit components for the ground state 3T1 of d2 ion in an octahedral 
ligand field: 
 
All we have to do is to get the direct product between the irrep of the space part i.e. T1 and the irrep 
of the spin part Γtriplet = T1. One obtains : 
 

T1 ! T1  =  A1 + E + T1 + T2 
 
Hence, le term considered splits under the spin-orbit coupling according to the following scheme: 
 

3T1 ! A1 + E + T1 + T2 
 
 
Angular Overlap Model (AOM) and ligand field model 
 
a) Ligand field model 
 
We want to represent the action of the chemical environment through an electrostatic perturbation 
 
h  =  ho  +  vLF 
 
where ho is the hamiltonien of the free ion and vLF the electrostatic potential of ligand charge 
density at the metallic centre. If ρ(r) the charge density due to the ligands one obtains for the 
electrostatic potential 
 

v(r)  =  -e 
!(R)

R - r
 dR 

 
The symbols used are defined in the fig. below an e represents the charge of the electron. 
 



L

L

L

M

r

R!

 
 
 
Expand 1/|r-R| to obtain 
 

1

R - r
  =  1

r<
 

r<

r>

k

!
k=0

!

  Pk cos "  

 
where r< = min{r,R}, r> = max{r,R} and Pk(x) is a Legendre polynomial of order k. 
We suppose (van Vleck and Bethe, 1928) that 

r < R 
 
With this hypothesis, we get: 
 

1

R - r
  =  1

R
 r

R

k!
k=0

!

  Pk cos "  

 
Moreover the Legendre polynomial may be expressed in  term of spherical harmonics Ykm: 
 

Pk cos !   =  4"
2k+1

 Ykm!
m=-k

+k

(#,$ ) Ykm
* (%,&) 

 
where r = (r,θ,φ) and R = (R,Θ,Φ). Thus, one obtains: 
 

vLF  =    hkq!
q=-k

+k

!
k=0

2l

 Ykq 

 



l=2 for d-electrons and =3 for f-electrons; the parameters hkq are adjustable and describe the ligand 
field.  
The two following relation are useful: 
 

     hkq  =  - 4!e
2k+1

 <rk> 
"(R) Ykq

* (#,$)

RK+1
 dR                     

=  (-1)m (2k+1)  l     l     k
-m m'  q

 <lm|vLF|lm'>!
m,m'

 

 

! 

j1 j2 j3

m1 m2 m3

" 

# 
$ 

% 

& 
'  are the well-known 3-j symbols of Wigner. The matrix <lm|vLF|lm'> has the 

dimension (2l+1)x(2l+1) and represents the operator vLF in the basis of the d-, or f-orbitals. The 
same result can be obtained with the AOM discussed in the following section. 
E.g. for an octahedral d complex we get : 
 

vOh  =  - 3

2
 ! Y4-4  - 5

2
 ! Y40  - 3

2
 ! Y44 

 
Thus the action of an octahedral ligand field has the following splitting scheme: 
 

E z

x

y

x

zz

yx

y

!

 



 
b) Angular Overlap Model (AOM) 
 
Consider: 
 

-e !

!L

dz
2

e!

z

 
 
 
Consider now other possible types of M-L interactions: 
 
   no nodal plane: σ 
 
   one nodal plane:  π 
 
   two nodal planes: δ (never observed) 
 



z

z

Définition de e!
Définition de e"  

 
Consider the splitting of the 5 d-orbitals due to a local M-L interaction: 
 

(xy, x2-y2)

(xz, yz)

(z2)

|nd>

e!

e"

 
 
 
A semi-quantitative physical interpretation of the parameters eσ et eπ can be estimated as follows: 
 

 ek !  
<"M|h|"Lk

>
2

<"M|h|"M> - <"Lk
|h|"Lk

>
  !  const. <"M|"L>

2 

 
where h is an effective hamiltonian for the M-L entity and ψ represents respectively the orbitals of 
the metal M and of the ligand L, i.e. σ or π. 
If we suppose additivity and transferability of the AOM parameters we obtain for the ligand field 
 



     v  = vL!
L

 

 
The calculation of the elements <di|v|dj> in the basis of d-orbitals: 
 
 d1  =  dz2  =   R(r) (3z2-r2)/(2√3) 
 d2  =  dyz  =   R(r) yz 
 d3  =  dxz  =   R(r) xz 
 d4  =  dxy  =   R(r) xy 
 d5  =  dx2-y2 =   R(r) (x2-y2)/2 
 
is illustrated below.  
Let us first consider the interaction of a ligand L in axial z position with the d-orbitals , i.e. 
<di|vzL|dj> = vzij,L 
 

vzL z2 yz xz xy x2-y2 
z2 σL     
yz  πL    
xz   πL   
xy    0  

x2-y2     0 
 
Next consider the interaction of ligand L on the x-axis with the d-orbitals, i.e. <di|vxL|dj> = vxij,L = 
? . we have to carry out the following axis transformation: 
 

x   !   Z

y   !   Y

z   !  -X

 

 
and let us apply this transformation to the previous system 
 



DZ2dz2

Y=y

X

Z
x

y

z

 
 
 
we obviously get 

vL
x  =  vL

Z  
 
and 
 

dz2  !  1

2 3
 3z2 - r2   =  1

2 3
 3X

2
 - R

2
  =  

 

- 1

2
 1

2 3
 3Z

2
 - R

2
  +  3

2
 1

2
 X

2
 - Y

2
  =

- 1

2
 DZ

2  +  3

2
  DX

2
-Y

2

 

 
Hence 

 

< dz2 | vL
x | dz2 >  =  < - 1

2
 DZ

2  +  3

2
  DX

2
-Y

2 | vL
Z | - 1

2
 DZ

2  +  3

2
  DX

2
-Y

2 >  =

1

4
 < DZ

2 | vL
Z | DZ

2 > - 3

4
 < DZ

2 | vL
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2
-Y

2 > - 3

4
 < DX

2
-Y
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Z | DZ

2 > + 3

4
 < DX

2
-Y

2 | vL
Z | DX

2
-Y

2 >

=  1

4
 < DZ

2 | vL
Z | DZ

2 >  =  1

4
 !L

 

 
If we apply the same calculation to all elements <di|vxL|dj> = vxij,L we get 



 
vxL z2 yz xz xy x2-y2 
z2 1

4
 !L    - 3

4
 !L 

yz      
xz   πL   
xy    πL  

X2-y2 - 3

4
 !L    1

4
 !L 

 
 
Finally consider an arbitrary position where the ligand L is located on an axis (θ, φ)  
 

x

y

 z

!

"

 
 

 x, y, z   !  X, Y, Z  
 
If one applies this transformation to the whole set of d-orbitals we obtain 
 

dDT =

 
 
where the elements of T are given in the table below: 
 



 
T Z2 YZ XZ XY X2-Y2 
z2 

! 

1

4
1+ 3cos 2"( ) 0    

–
3

2
sin 2!

 

0 0 

Yz 3

2
  sin 2 ! sin " cos ! cos " cos 2! sin " 0 0 

Xz 3

2
  sin 2 ! cos "    - cos ! sin "  cos 2! cos " 0 0 

Xy   
3

2
sin

2
! sin 2" 

sin ! cos 2" 1

2
 sin 2 ! sin 2 " 0 0 

x2-y2   
3

2
sin

2
! cos 2" 

- sin ! sin 2 " 1

2
 sin 2 ! cos 2" 0 0 

 
 
Whereas the calculation of the elements <di|vL

(!,")
|dj> are obtained as previously  

 
<di|vL

(!,")
|dj>  =  v

ij,L

(!,")
  =  < TikDk !

k

 | v
L

(!,")
 | TjlDl !

l

 >

=   !
k,l

Tik Tjl  <Dk|v
L

(!,")
|Dl>

 

But 
 

<Dk|v
L

(!,")
|Dl>  =  <dk|vL

z|dl> 

 
where 

vkk,L
z   =  

!L " e!,L                       pour  k = 1   ( z2)

#L" e#||,L,e#$,L   pour  k = 2,3   (yz,xz)

0                    pour  k = 4,5   ( xy,x2-y2)

 

 
Thus 

<di|vL

(!,")
|dj>  =  v

ij,L

(!,")
  =  Tik Tjk  vkk,L

z!
k=1

5

 

 
To summarize, the calculation of the d-level splitting is as follows: 
 

(i) Calculate  v
ij,L

(!,")
  =  Tik Tjk  ek,L!

k=1

3

 ,  where k = e!,L,e"||,L,e"#,L   for each ligand L. 

(ii) Calculate the full matrix:  vij  =  v
ij,L

(!,")
!
L

 

(iii) If needed diagonalize the matrix vij = v 
(iv) The eigenvalues thus obtained are energies levels of the d-orbitals in the field of the ligands  



 
To conclude we give below two tables. The 1st one represents the splitting of the d-orbitals for 
common coordination geometries. The 2nd one lists numerical values of AOM parameters for 
common cobalt and chrome complexes. 
 
  Table: Splitting of d-orbitals in three common ligand fields 

orbital octahedron square planar (xy) tetrahedron 
z2 3eσ eσ 8

3
 e! 

yz 4eπ 2 e!||+e!"  4

3
 e! + 8

9
 e" 

xz 4eπ 2 e!|| 4

3
 e! + 8

9
 e" 

xy 4eπ 2 e!|| 4

3
 e! + 8

9
 e" 

X2-y2 3eσ 3eσ 8

3
 e! 

 
  Table: AOM parameters for a few common Cr- and Co-complexes in 103cm-1. 

M-L eσ eπ Δo (=3eσ-4eπ) 

Cr-Br 5.34 1.00 10.02 
Cr-Cl 5.56 0.90 13.07 
Cr-F 7.63 1.88 15.37 

Cr-OH 8.66 2.25 17.00 
Cr-NCS 6.41 0.38 17.71 
Cr-py 5.80 -0.58 19.71 

Cr-NH3 7.28 0.00 21.85 
Cr-CN 8.48 -0.29 26.50 

    
Co-Cl 6.29 1.29 14.60 

Co-OH2 6.60 1.08 15.47 
Co-OH 9.61 4.54 10.67 
Co-NH3 7.81 0.00 23.43 
Co-CN 12.15 0.39 34.89 

 
 
 
Matlab script : 
% O 
data=[0 0 6 1 1; 
90 0 6 1 1; 
90 90 6 1 1; 
90 180 6 1 1; 
90 270 6 1 1; 
180 0 6 1 1]; 
% D4 
%data=[ 



%90 0 6 1 1; 
%90 90 6 1 1; 
%90 180 6 1 1; 
%90 270 6 1 1]; 
% D3 
%data=[ 54.7356   0 1. .0 .0; 
%       54.7356 120 1. .0 .0; 
%       54.7356 240 1. .0 .0; 
%      125.2644  60 1. .0 .0; 
%      125.2644 180 1. .0 .0; 
%      125.2644 300 1. .0 .0]; 
% Icosahedron 
%data=[ 
%         0         0 1 0.1 0.1; 
%   63.4349   90.0000 1 0.1 0.1; 
%   63.4349   18.0000 1 0.1 0.1; 
%   63.4349  306.0000 1 0.1 0.1; 
%   63.4349  234.0000 1 0.1 0.1; 
%   63.4349  162.0000 1 0.1 0.1; 
%  116.5651  270.0000 1 0.1 0.1; 
%  116.5651  198.0000 1 0.1 0.1; 
%  116.5651  126.0000 1 0.1 0.1; 
%  116.5651   54.0000 1 0.1 0.1; 
%  116.5651  342.0000 1 0.1 0.1; 
%  180.0000         0 1 0.1 0.1]; 
n=size(data);conv=pi/180; 
for i=1:5 
for j=1:5 
v(i,j)=0; 
for l=1:n(1) 
t=trd(conv*data(l,1:2)); 
for k=1:3 
v(i,j)=v(i,j)+t(i,k)*t(j,k)*data(l,k+2); 
end 
end 
end 
end 
disp('   Dsigma    Dpi,s     Dpi,c     Ddel,s    Ddel,c') 
disp(v) 
[c e]=eig(v); 
[e iv]=sort(diag(e)); 
e=e';disp(' ');disp(e) 
c=c(:,iv);disp(c) 
%v 
%[c e]=eig(v); 
%[e iv]=sort(diag(e)); 
%e=e' 
%c=c(:,iv) 
 
function t=trd(w) 
theta=w(1);phi=w(2); 
sq=sin(theta);cq=cos(theta);s2q=sin(theta+theta); 
c2q=cos(theta+theta);sq2=sq*sq; 
sf=sin(phi);cf=cos(phi);s2f=sin(phi+phi);c2f=cos(phi+phi); 
r32=0.5*sqrt(3); 
t=[0.25*(1+3*c2q) 0 -r32*s2q; 
r32*s2q*sf cq*cf c2q*sf;  
r32*s2q*cf -cq*sf c2q*cf;  
r32*sq2*s2f sq*c2f 0.5*s2q*s2f;  
r32*sq2*c2f -sq*s2f 0.5*s2q*c2f]; 
 
 



Density Functional Theory calculation of the Ligand-Field manifold (LFDFT) 
 
Ligand field theory has been used with success to describe ground and excited electronic states 
originating from dn transition metals (TM) in their complexes. Both crystal/ligand field theory 
(LFT) and developments - the angular overlap model (AOM) parameterize the Hamiltonian in terms 
of one-electron (ligand field) parameters and two-electrons repulsion integrals within the manifold 
of d-electrons. The latter ones are treated as atomic-like, thus preserving spherical symmetry, while 
the former take full account for the lowering of symmetry when a spherical TM atom or ion is 
introduced in a complex. Thus, in cubic symmetry, only one energy parameter 10Dq – the energy 
difference between the σ and π, eg and t2g for octahedral field (or between the σ+π and π, t2 and e 
orbitals for tetrahedral field) is introduced in addition to Racah’s inter-electronic repulsion 
parameters B and C. These three parameters are usually determined from a fit to electronic 
absorption spectra in high resolution. From these data, two general observations can be made: 
i) Ligands order in a sequence of increasing values of 10Dq, called spectrochemical series, where 
negatively charged ligands such as I < Br < Cl < F possess smaller 10Dq values, than neutral 
molecules H2O < NH3 < pyridine, CN- and CO being the strongest ligand due to their ability for 
back bonding. 
ii) B and C parameters in complexes are smaller than those for the free ions - the phenomenon 
being discovered by Schäffer and Jørgensen and rationalized in terms of the electronic cloud 
expansion of the d-orbitals when going from free TM ions to complexes (nephelauxetic effect). The 
more reducing and softer ligands show a stronger reduction than the more oxidizing and harder 
ones. 
 
Description of the model 
The LFDFT method, which has been recently proposed by Atanasov and Daul is briefly 
summarised here. Let us assume that we know the complex geometry, either from a first principle 
geometry optimisation or from X-ray data. The first step consists in a spin-restricted SCF DFT 
calculation of the average of the dn configuration (AOC), providing an equal occupation n/5 on each 
MO dominated by the d-orbitals. The Kohn-Sham orbitals, which are constructed using this AOC 
are best suited for a treatment in which, interelectronic repulsion is - as is done in LF theory, 
approximated by atomic-like Racah parameters B and C. The next step consists in a spin-
unrestricted calculation of the manifold of all Slater determinants (SD) originating from the dn shell, 
i.e. 45, 120, 210 and 252 SD for d2,8, d3,7, d4,6 and d5 TM ions, respectively. These SD energies are 
used in the third step to extract the parameters of the one-electron 5x5 LF matrix hab as well as 
Racah’s parameters B and C in a procedure, which we describe below. Finally, we introduce these 
parameters as input for a LF program allowing to calculate all the multiplets using CI of the full LF 
manifold utilizing the symmetry as much as possible. We should note that in classical LF theory, it 
is only the LF hab matrix, which carries information about the symmetry and the actual bonding in 
the complex, thus providing useful chemical information. 
 
For octahedral complexes the LF matrix reduces to one parameter – 10Dq.  We, thus have, for each 
SD energy the simple linear expression in terms of B, C and 10Dq: 
 

! 

E SDµ
d( )= E det di µ,1( )" i µ,1( )di µ,2( )" i µ,2( )...di µ,n( )" i µ,n( )( )= di hLF di

i

# + Jij $Kij%" i" j( )
i< j

#

=
3mµ $ 2nµ

5
10Dq + &µB + 'µC + E0

 

 

The single determinants 

! 

SDµ
d  are labelled with the subscript µ = 1, …, 

! 

10

n

" 

# 
$ % 

& 
'  and with the superscript 

d to refer to pure d-spinorbitals. The values of mµ and nµ specify the electronic configuration 



µµ m

g

n

2g et , while the βµ and γµ are coefficients obtained after substituting standard expressions for 
the Coulomb Jij and exchange Kij integrals in terms of d-only orbitals di and spin functions σi. E0 
represents the gauge origin of energy. 
Having obtained energy expressions for each 

! 

SDµ
d : 10Dq, B, C and E0 are estimated using a least-

squares procedure. Using matrix notation, we thus obtain an overdetermined system of linear 
equations with the unknown parameters stored in X  and given below. 
 

XAE = ,  i.e.  EAA)AX
T-1T(=  

 
Comparing SD energies from DFT with those calculated using the LF parameter values, we can 
state for all considered cases, that the LF parameterization scheme is remarkably compatible with 
SD energies from DFT; standard deviations between DFT-SD energies and their LFDFT values are 
generally between 0.01 and 0.1 eV as shown in the Fig. Below. 
 

 
 
This model can obviously be generalized allowing to treat systems with symmetry lower than cubic 
or even without any symmetry (C1). Here we make use of the general observation that the KS 
orbitals and the set of SD considered in eq.(1) convey all the information needed to setup the LF 
matrix. 
Following the effective Hamiltonian approach, let us consider the KS orbitals dominated by d-
functions which result from an AOC dn DFT-SCF calculation. From the components of the 
eigenvector matrix built up from such MOs one takes only the components corresponding to the d 
functions. Let us denote the square matrix composed of the new column vectors by U and introduce 
the overlap matrix S: 
 



S = UUT  
 
Since U is in general not orthogonal, we use Löwdin’s symmetric orthogonalisation procedure to 
obtain an equivalent set of orthogonal eigenvectors (C): 
 

! 

C = S
"
1

2U  
 
We identify now these vectors as the eigenfunctions of the effective LF Hamiltonian 

! 

hLF
eff  sought, as  

 

! 

" i = cµidµ

µ=1

5

#  

 
Thus, the fitting procedure described in the previous section will enable us to estimate 

! 

hii = " i hLF
eff

" i  and hence the full representation matrix of 

! 

hLF
eff  as 

 

! 

hµ" = dµ hLF
eff
d" = cµihiic"i

i=1

5

#  

 
The next step is now to generalize the fitting procedure for the case of no or low symmetry. The 
energy of a single determinant becomes thus: 
 

! 

E SDk
"( )= E det " i k,1( )# i k,1( )" i k,2( )# i k,2( )..." i k,n( )# i k,n( )( )= " i hLF " i

i

$ + J ij %Kij&#i# j( )
i< j

$  

 
Where 

! 

SD
k

"  is composed of the spinorbitals mentioned earlier. 
In order to calculate the electrostatic contribution, it is useful to consider the transformation from 
the basis of 

! 

SD
k

"  to the one of 

! 

SDµ
d . Using basic linear algebra, we get: 

 

! 

SD
k

"
= Tkµ SDµ

d

µ

#  

 
Where 

! 

Tkµ = detci k,1:n( ), j µ,1:n( )  i.e. the determinant of a nxn sub-matrix of 

! 

C" #  
 

! 

ci k,1( ), j µ ,1( ) ci k,1( ), j µ ,2( ) ... ci k,1:n( ), j µ,n( )

ci k,2( ), j µ,1( ) ci k,2( ), j µ,2( ) ... ci k,2( ), j µ,n( )

... ... ... ...

ci k,n( ), j µ,1( ) ci k,n( ), j µ,2( ) ... ci k,n( ), j µ,n( )

 

 
With the indices of the spinorbitals 

! 

" i k,1( )# i k,1( )," i k,2( )# i k,2( ), ...," i k,n( )# i k,n( )  and  

! 

dj µ ,1( )" j µ,1( ), dj µ,2( )" j µ ,2( ), ..., dj µ ,n( )" j µ,n( )  respectively. Note that these indices are in fact a two-
dimensional array of (number of SD) x (number of electrons or holes) integers. Finally the energy 
of a SD can be rewritten as  
 

! 

Ek = E SD
k

"( )= " i hLF " i
i

# + TkµTk$ SDµ
d
G SD$

d

µ ,$

#  



 
Where G =1/r12 i.e. the electrostatic repulsion of all electron pairs in the LF manifold. 
 
The matrix elements are readily obtained using Slater’s rules and the resulting electrostatic two-
electron integrals <ab|cd> in terms of Racah’s parameters. Thus the final equation to estimate hii, (i 
= 1,…, 5), B and C from the DFT energies Ek of all the SD within the LF manifold will be of the 
same shape as eqs.(4) and (5) where  C)B,,h,...,(hX 5511=  and A is calculated as indicated above  
 
 
Examples 

Cr Cl4       CrBr4 
Term     LDA     GGA  LF-fit    Exp.a     LDA     GGA      Exp.a 
3A2(e2)        0        0      0       0       0        0       0 
1E(e2)     6542     7101    6089       -    6373    6832    6666 
1A1(e2)   11114   11971  10586       -  10698  11364  10869 
3T2(e1t2

1)     7008     6524   7010    7250    6163    5605      - 
3T1(e1t2

1)   10316   10062 10440  10000    9269    8820      - 
1T2(e1t2

1)   13454   13489 12991  12000  12434  12295      - 
1T1(e1t2

1)   15074   15456 14718      -  14037  14215      - 
1A1(t2

2)   32099   32891 30599      -  30120  30531      - 
1E(t2

2)   21121   20878 20716      -  19271  18777      - 
3T1(t2

2)   16033   15795 16229  16666  14424  14043  13258 
1T2(t2

2)   21217   21014 20822      -  19373  18920      - 
R(M-X)    2.104    2.144    -      -    2.264   2.318      - 
B     355      419    376      -     347      403      - 
C   1903    1952  1579      -   1855    1887      - 
10Dq   7008     6524  7250      -   6162    5605      - 
 SD    0.054    0.070     -      -    0.054     0.067      - 
(10Dq)orb    7258     6686     -      -   6371    5726      - 
 
 
 
-                                                                                   CrCl6

3-                                                          CrBr6
3- 

Term     LDA LFT fit 
 to exper.  

   Exp.     LDA   LFT fit 
 to exper 

     Exp. 

4A2g(t2g
3)       0      0        0       0        0       0 

2Eg(t2g
3) 10756  14426   14430b   10333   13900    13900b 

2T1g(t2g
3) 11180  14873       -   10694   14348      - 

2T2g(t2g
3) 15918  21037       -   15185   20281      - 

4T2g(t2g
1eg

1) 10911  12800   12800b     9816   12400   12400b 
4T1g(t2g

1eg
1) 15618  18198   18200b   13992   17700   17700b 

2A1g(t2g
1eg

1) 20056  25351       -   18709   24459      - 
2T1g(t2g

1eg
1) 21878 27421       -   20316   26503      - 

2T2g(t2g
1eg

1) 21568 27079       -   20047   26159      - 
2Eg(t2g

1eg
1) 23147 29098       -   21530   28126      - 

4T1g(t2g
1eg

1) 24375 28455       -   21861   27643      - 
R(M-X) 2.419     -    2.335d   2.588       -    2.47e 
 
 
 



Practical calculation of energy levels in metal complexes: Multiplets, Spin-Orbit and Zero-Field-
Splitting 
 
The calculation of energy levels within the whole ligand field manifold is now an easy task. All we 
need is to combine the results of the previous chapters. This, is best achieved using computational 
methods in the MATLAB environment. 
 
The Matlab script below is an extension to the ones presented in Chap. 2. This procedure calls : 

(i) get2ei4a : gets all 2-electron integrals for atoms with open [lq(1) lq(2) …]Ne-shells. The 
the electrostatic matrixelements <iabcd( :,1) iabcd( :,2) | iabcd( :,3) iabcd( :,4) > = 
vabcd(:,:)*parameters(:). The target transformation following the call to get2ei4a re-
expresses the abstract Slater-Condon parameters into non-redundant <ab|cd>. 

(ii) genersd : generates all single determinants for n electrons occupying spinorbitals k_start 
to k_end. 

(iii) getls : get l, s and l.s one-electron matrices 
 
% 
% generate g-, lf-, ls-data for lq^ne 
% 
%global iabcd vabcd 
% 
global lq 
% 
global lx ly lz sx sy sz ls 
% 
% get - electrostatic 2-electron matrix elements 
%     - ligandfield 1-electron matrix elements   
%     - spin and orbit 1-electron matrix elements   
t0=cputime; 
%lq=[2,0]; 
lq=[3]; 
ne=1; 
% 
% generate single determinants or microstates for lq^ne 
ir=genersd(ne,1,2*sum(lq+lq+1)); 
% 
% get <ab|cd>  
%[vabcd,iabcd]=get2ei4a(lq); 
% 
% get l, s and l*s 1-e matrices: l=2 & s=1/2 
[lx,ly,lz,sx,sy,sz,ls]=getls(lq,1/2); 
% 
% calculate 
nsd=length(ir);ij=0; 
for i=1:nsd 
 for j=1:i 
  ij=ij+1; 
   lfdata(ij,:)=lfab(ir(i,:),ir(j,:)); 
   lsdata(ij,:)=zab(ir(i,:),ir(j,:)); 
%   gdata(ij,:)=gab(ne,ir(i,:),ir(j,:)); 
 end 
end 
Elapsed_time=cputime-t0 
%save data_d2 ir gdata lfdata lsdata 
save data_f1 ir lfdata lsdata 
 
 
function lf=lfab(la,lb) 
global lq; 
% Get <A|lf(1:(lq+lq+1)*(lq+1))|jB> 
% 



ne=max(size(la));lf=zeros(1,(lq+lq+1)*(lq+1)); 
ie=0;id=0;sgn=1; 
for k=1:ne 
ld=find(la(k)==lb); 
 if isempty(ld) 
  id=id+1;kd(id)=la(k); if rem(k,2)==1, sgn=-sgn; end 
 else 
  ie=ie+1;ke(ie)=la(k); 
 end 
end 
%kd 
%ke 
if id == 0 
% id=0 
 for k=1:ne  
   if iwab(ke(k),ke(k))>0, lf(iwab(ke(k),ke(k)))=lf(iwab(ke(k),ke(k)))+1; end 
%  f=f+wab(ke(k),ke(k)); 
  end 
elseif id==1 
% id>0 
iv=0; 
for k=1:ne 
ld=find(lb(k)==la); 
 if isempty(ld) 
  iv=iv+1;kdp(iv)=lb(k); if rem(k,2)==1, sgn=-sgn; end 
 end 
end 
%kdp 
% f=sgn*wab(kd(1),kdp(1)); 
   if iwab(kd(1),kdp(1))>0, lf(iwab(kd(1),kdp(1)))=sgn; end 
end 
 
 
function iw=iwab(i,ip) 
% Get iw(<i|f|ip>) 
% 
ia=fix((i+1)/2); 
ib=fix((ip+1)/2); 
% 
if rem(i,2)~=rem(ip,2) 
 iw=0; 
else 
 if ia<=ib, iw=ia+ib*(ib-1)/2;end 
 if ib<=ia, iw=ib+ia*(ia-1)/2;end 
end 
 
 
Once the full Electrostatic Repulsion, Ligandfield and Spin-Orbit matrices are generated (this task 
is needed only once for a given LF-manifold), the following program has to be executed in order to 
get the full electronic structure. 
 
%======== 
% erlfls 
%======== 
load data_d5 
%  
[nsd ne]=size(ir);ij=0; 
% 
% input parameters 
r=[0; 1; 4]; 
lfpar=[    0; 
           0;        0; 
           0;        0;        20; 
           0;        0;         0;        0;  



           0;        0;         0;        0;      20]; 
zeta=0.2; 
% 
% get electrostatic matrix in basis of microstates 
ij=0; 
for i=1:nsd 
 for j=1:i 
  ij=ij+1; 
  h(i,j)=gdata(ij,:)*r+lfdata(ij,:)*lfpar+lsdata(ij,7)*zeta; 
  h(j,i)=conj(h(i,j)); 
 end 
end 
% get Eigenvalues and Eigenvectors of h 
[c,e]=eig(h);[e,ie]=sort(real(diag(e))); 
e=e-e(1)*ones(size(e));c=c(:,ie); 
% sort according to multiplicities 
i0=1;i1=0; 
for i=2:nsd 
 if abs(e(i)-e(i-1))>0.001 
  i1=i1+1;w(i1)=e(i-1);mul(i1)=i-i0;i0=i; 
 end 
end 
i1=i1+1;w(i1)=e(i0);mul(i1)=nsd-i0+1; 
% print result 
fprintf('_____________________________ \n')  
fprintf(' Multiplicity           E \n') 
fprintf('_____________________________ \n')  
for i=1:i1 
fprintf('     %3i       %12.3f\n',mul(i),w(i)) 
end 
fprintf('_____________________________ \n')  
 
 
 
Interaction of paramagnetic electrons in a metal complex with an external magnetic field. 
 
Example : Ground state of d1 
 
Consider the ground state 2T2g of a d1 ion in an octahedral ligandfield. We suppose that the excited 
2Eg state is sufficiently separated in energy from the ground state. If we neglect 2nd order spin-orbit 
coupling, the ground state 2T2g will split into a new ground state Γ8 that is fourfold degenerate and 
in a doublet Γ7 higher in energy by an amount of 3

2
 !. Next, we consider the interaction with an 

external magnetic field (Zeeman) to 1st order, i.e. 
  

! 

"8
2
T2g( )

r 
H # $

r 
L + ge$

r 
S ( ) "8 2

T2g( ) . If we 

diagonalize this matrix a surprising result is obtained, that is, the orbital contribution ! L" H 
compensates exactly the spin contribution !geS" H (if we take ge = 2). Thus, Γ8 is accidentally not 
influenced to 1st order by the Zeeman perturbation. However, Γ7 is split into two components by an 
amount ±!H  versus Γ7. To second order the components of Γ7 and Γ8 couple. Two components of 

Γ8 are lowered by - 4

3
 
!

2
H2

"
, the two others remain unchanged. The components of Γ7 are both 

destabilized by 4

3
 
!

2
H2

"
. The whole splitting pattern is represented graphically in figure 1 below. 

Note that this result is independent of the direction of the magnetic field since the complex is cubic 
and hence magnetically isotropic. 
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FIG. 1 - Successive action of spin-orbit coupling and Zeeman perturbation  
onto  the ground state of a d1 ion in an octahedral field. 

 
Note that the Zeeman perturbation acts only to 2nd order because the term we consider is perturbed 
by spin-orbit-coupling. 
 
 
Reminder : Van Vleck Formula 
 
Consider En the energy the n-th electronic level of a complex molecule or ion in an external 
magnetic field H . Let’s expand En as: 
 
  En  =  En

(0) + En
(1)H + En

(2)H2 + ...  
 
where En

(0) is the energy without magnetic field and En
(1) et En

(2) the first and second order Zeeman 
coefficients respectively. 
 
Moreover:  !  =  

M

H
  

 
This yields the Van Vleck formula: 
 

  !  =  

N  
En

(1) 2

kT
 - 2 En

(2)  exp - 
En

(0)

kT
!
n

exp - 
En

(0)

kT
!
n

  

 



describing the variation of χ as a function of the temperature. Below 10K this formula may loose its 
validity. The coefficient En(1) and En(2) can easily be calculated using ligand field theory. 
 
 
Paramagnetism of dn ions in strong octahedral fileds 
 
Combining the the results of the two previous sections, the variation of the paramagnetism of a d1 
ion as a function of temperature is easily obtained. The terms En

(0), En
(1) et En

(2) are gathered together 
below for the various levels n. 
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Insert into Van Vleck’s equation, we obtain: 
 

  !  =  
N"

2

3kT
 
 8 + (3x-8) exp - 3x

2

x 2 + exp - 3x
2

 

where: 
  x  =  !

kT
 

 
One frequently expresses this result as the variation in function of temperature of the effective 
magnetic moment µeff conventionally related to χ as: 
 

  µeff  =  
3k!T

N"
2

1/2

 

 



For the case studied here we get: 
 

  µeff  =   
 8 + (3x-8) exp - 3x

2

x 2 + exp - 3x
2

1/2

 

 
If the Curie law is satisfied, µeff does not depend on temperature. It is seen according to the eq. 
above that this is not the case. Indeed, µeff vanishes for T = 0 et becomes equal to 5  as the 
temperature increases infinitely. Figure 2 represents the variation of µeff as a function of kT

!
 . 

 

kT/|!|

µeff [MB]

d
5

d
1

d
7 

et d
9

d
2

d
4

d
3

 
 

FIG. 2. —Theoretical variation of the effective magnetic moment as a function  
of temperature for octahedral dn ions in strong fields. 

 
Let’s return to the Van Vleck formula and consider the paramagnetism of a complex whose ground 
state 2S+1Γ, is well separated from all excited states and does not possess any orbital angular 
momentum. Hence no spin-orbit coupling needs to be taken into account. If the complex is 
octahedral, its ground state is necessarily orbital singlet or doublet. Thus, the Zeeman perturbation 
has second order contribution i.e. all En

(2) are zero. Moreover, all En
(0) are identical, and one obtains: 

 

  !  =  N
kT

 
En

(1) 2

n!
n

 

 
The Zeeman perturbation acts only onto to the 2S+1 spin functions and the terms En

(1) take the 
following values: S, S—1, . . .,—S + 1,—S in units of geβ. The eq. above becomes thus: 
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N ge
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2

kT
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-S 2 + -S+1 2 + ... + S-1 2 +  S2
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#
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3
 

 
that is: 
 
  µeff  =  ge S(S+1) 
 
Hence the paramagnetism follows Curie’s law as a particular case of the more general Van Vleck 
equation. The eq. above may be rewritten, if we take ge = 2 as: 
 
  µeff  =  N(N+2) 
 
where N is the number of unpaired electrons. 
 
As example, Figure 2 represents the theoretical variation of the effective magnetic moment of dn (0 
< n < 10) ions in a strong octahedral field as a function of kT

!
 . For the ions d3(4A2g), d6(1A1g), 

d7(2Eg), d8(3A2g) et d9(2Eg), µeff does not depend on temperature. For the other configurations 
d1(2T2g), d2(3T1g), d4(3T1g), d5(2T2g), µeff changes as a function of temperature. 
 
 
A matlab script to calculate magnetic susceptibility χ is listed below : 
 
% 
% lf+er+l+s for d**3 
% 
% Order of d-orbitals:  
%  z2, x2-y2, xy, xz, yz 
% 
% Order of d-spinorbitals:  
%  z2+, z2-, x2-y2+, x2-y2-, xy+, xy-, xz+, xz-, yz+, yz- 
% 
clear all 
% 
%============================================================================ 
% D A T A    I N P U T 
% 
% Input of Racah's parameter: r=[A B C] 
r=[0; 0.53; 2.00]; 
% Input of LF mat. el. <di|LF|dj> 
lfpar=[-9.2; 
           0; -9.2; 
           0;  0;   0; 
        0;  0;   0;    0; 
     0;  0;   0;    0;    0]; 
% spin-orbit coupling constant 
zeta=-0.4; 
% Orbital Reduction Factor 
orf=0.8; 
% gyromagnettic value of free electron 
ge=2.0023; 
% (2S+1)*M(gamma) for g.s. multiplet 
% Ex.: g.s. for octahedral [Co(ii)L_6]^q 
%      S=3/2 & gamma = T_1, ergo nvv=4*3=12 
nvv=12; 
% 
% Number of quadrature points for spatial orientation (theta,phi) of magnetic 
field 



ntheta=10; nphi=20; 
% 
% kinetic energy k*T in same energy units as Racah's, LF and SO parameters 
% kT=0.695cm-1 at 1K 
kt=0.2; 
% 
% magnetic field in users energy units [beta*H] 
% h0=0.467cm-1 at 1Tesla=10'000gauss 
h0=0.001; 
% 
%============================================================================ 
% 
% get: - microstates ldata_dn 
%      - electrost. rep. gdata_dn 
%      - LF matrix lfdata_dn 
%      - L&S matrix lsdata_dn 
% 
load full_d3.mat   
nsd=max(size(ldata_d3));kkpmx=max(size(gdata_d3)); 
% 
% 
% Calc. 
% 
% get h = er + lf + so 
kkp=0; 
for k=1:nsd 
for kp=1:k 
kkp=kkp+1; 
h(k,kp)=lfdata_d3(kkp,:)*lfpar+gdata_d3(kkp,:)*r+zeta*lsdata_d3(kkp,7); 
h(kp,k)=conj(h(k,kp)); 
% get orbital and spin angular momentum matrices (large memory) 
lx(k,kp)=lsdata_d3(kkp,1);sx(k,kp)=lsdata_d3(kkp,4); 
lx(kp,k)=conj(lx(k,kp));sx(kp,k)=conj(sx(k,kp)); 
ly(k,kp)=lsdata_d3(kkp,2);sy(k,kp)=lsdata_d3(kkp,5); 
ly(kp,k)=conj(ly(k,kp));sy(kp,k)=conj(sy(k,kp)); 
lz(k,kp)=lsdata_d3(kkp,3);sz(k,kp)=lsdata_d3(kkp,6); 
lz(kp,k)=conj(lz(k,kp));sz(kp,k)=conj(sz(k,kp)); 
end 
end 
% get Eigenvalues and Eigenvectors of h 
[c,e]=eig(h);[e,ie]=sort(real(diag(e))); 
e=e-e(1)*ones(size(e));c=c(:,ie); 
% sort according to multiplicities 
i0=1;i1=0; 
for i=2:nsd 
 if abs(e(i)-e(i-1))>0.001 
  i1=i1+1;w(i1)=e(i-1);mul(i1)=i-i0;i0=i; 
 end 
end 
i1=i1+1;w(i1)=e(i0);mul(i1)=nsd-i0+1; 
% print result 
fprintf('_____________________________ \n')  
fprintf('(2S+1)*M(gamma)         E \n') 
fprintf('_____________________________ \n')  
for i=1:i1 
fprintf('     %3i       %12.3f\n',mul(i),w(i)) 
end 
fprintf('_____________________________ \n')  
% Get Zeeman matrices (large memory) 
zx=c(:,1:nvv)'*(orf*lx+ge*sx)*c(:,1:nvv); 
zy=c(:,1:nvv)'*(orf*ly+ge*sy)*c(:,1:nvv); 
zz=c(:,1:nvv)'*(orf*lz+ge*sz)*c(:,1:nvv); 
% get van Vleck coefficient 
e0=e(1:nvv); 
%  *** integrate over u=cos(theta) and phi 



% get angular grid (Gauss-Legendre) 
% u=cos(theta) , -1<u<1 
[u,wu]=gauleg(-1,1,ntheta); 
% phi , 0<phi<2*pi 
[phi,wf]=gauleg(0,pi+pi,nphi); 
% 
dh=0.01*h0; 
schi=0; 
for iu=1:ntheta 
for ip=1:nphi 
eh=[sqrt(1-u(iu)*u(iu))*cos(phi(ip)) sqrt(1-u(iu)*u(iu))*sin(phi(ip)) u(iu)]; 
hze=diag(e0)+(zx*eh(1)++zy*eh(2)+zz*eh(3))*dh; 
e1=sort(eig(hze)); 
hze=diag(e0)+(zx*eh(1)++zy*eh(2)+zz*eh(3))*(dh+dh); 
e2=sort(eig(hze)); 
w=inv([dh dh*dh/2;dh+dh 2*dh*dh])*[e1'-e0'; e2'-e0']; 
e0; 
e1=real(w(1,:)'); 
e2=real(w(2,:)'); 
% magnetic suszeptibility from van Vleck formula 
x=exp(-e0/kt); 
chi=0; 
for k=1:nvv 
 chi=chi+x(k)*(e1(k)*e1(k)/kt-e2(k)-e2(k));  
end 
chi=chi/sum(x); 
schi=schi+chi*wu(iu)*wf(ip); 
end 
end 
chi=schi/sum(wu)/sum(wf); 
mu_eff=sqrt(3*kt*chi) 
 


